If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+15q-12=0
a = 3; b = 15; c = -12;
Δ = b2-4ac
Δ = 152-4·3·(-12)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{41}}{2*3}=\frac{-15-3\sqrt{41}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{41}}{2*3}=\frac{-15+3\sqrt{41}}{6} $
| 2r=5/9 | | 0.25r-0.25+0.24=0.5-0.25r | | 180=12k | | 3/2x-3=-18 | | 15x+60240=x | | 14/040-50x=12,500+x | | 16x+4+12x+8=180 | | -17m-12m+16m=-11 | | (h-3)/3=3h | | 2x+2+3x+1=10x-22 | | 2x-33-4=637 | | 1/2c+4=1/8c+88 | | –7s=–9s−6 | | 3x2-7x=66 | | -4(r+6)+2r=-60 | | 3(x+9)-(x+9)=0 | | 28/9+2/3n=-4/3(n-7/3) | | 19t+t-13t+t+t=18 | | 3,4-0.2x=2.9+1.8x | | 16=1500x+3200 | | 18=-13x+16/11 | | -9v=19-8v | | 3x=5x-2=18x | | 28/8+2/3n=-4/3(n-7/3) | | 9-4r=12r | | b-2+6b=32 | | 20w+11w+12=19 | | -17-5(x+3=3x | | -7/6)x-6=-48 | | 2(x+3)−2=16 | | z−2=2 | | 6y+7+3y+11=180 |